MATH 579 Exam 8 Solutions

Part I: An L-triomino is a tile shaped like a 2×2 grid with one corner missing. A monomino is a single 1×1 square. How many ways there are to tile a $2 \times n$ chessboard with L-triomino's and monomino's?

Let a_{n} represent the desired quantity. We have $a_{0}=a_{1}=1, a_{2}=$ 5. A 'break' is a line (the short way) across the strip that does not intersect any of the tiles. The first break can happen at position 1,2 , or 3 . If at position 1 , there is one way to tile the 2×1 piece, and a_{n-1} ways to tile the remainder. If at position 2 , there are four ways to tile the 2×2 piece, and a_{n-2} ways to tile the remainder [Note: only four, not five, because this is the first break.]. If at position 3, there are two ways to tile the 2×3 piece, and a_{n-3} ways to tile the remainder. This leads to the recurrence relation $a_{n}=a_{n-1}+4 a_{n-2}+2 a_{n-3}$. This has characteristic equation $s^{3}-s^{2}-4 s-2=0$, which has roots $-1,1+\sqrt{3}, 1-\sqrt{3}$. Applying the initial conditions gives the specific solution $a_{n}=(-1)^{n}+\frac{\sqrt{3}}{3}\left((1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}\right)$.

Part II:

1. Solve the recurrence $a_{0}=2, a_{n}=3 a_{n-1}(n \geq 1)$.

This has characteristic equation $s-3=0$, so the general solution is $a_{n}=A 3^{n}$. The initial conditions give $2=a_{0}=$ $A 3^{0}$, so $A=2$ and $a_{n}=2 \cdot 3^{n}$.
2. Solve the recurrence $a_{0}=2, a_{n}=3 a_{n-1}-2(n \geq 1)$.

As per the previous problem, the homogeneous solution is $a_{n}=A 3^{n}$. To solve the nonhomogeneous recurrence, we guess the constant polynomial $a_{n}=B$, so $B=3 B-2$ and hence $B=1$. Hence the general nonhomogeneous solution is $a_{n}=A 3^{n}+1$. The initial condition gives $2=a_{0}=A+1$, so $A=1$ and $a_{n}=3^{n}+1$.
3. Solve the recurrence $a_{0}=a_{1}=0, a_{n}=a_{n-1}+2 a_{n-2}+e^{n}(n \geq 2)$.

The characteristic equation is $s^{2}-s-2=0$, which has roots $2,-1$ so the general homogeneous solution is $a_{n}=A 2^{n}+$ $B(-1)^{n}$. We guess $A_{n}=C e^{n}$ for the nonhomogeneous case,
getting $C e^{n}=C e^{n-1}+2 C e^{n-2}+e^{n}$. Dividing by e^{n-2} we get $C e^{2}=C e+2 C+e^{2}$, or $C\left(e^{2}-e-2\right)=e^{2}$. Hence $a_{n}=A 2^{n}+B(-1)^{n}+\frac{e^{2}}{e^{2}-e-2} e^{n}$ is the general solution to the nonhomogeneous problem. The initial conditions and a bit of algebra gives $a_{n}=\frac{-e^{2}}{3(e-2)} 2^{n}+\frac{e^{2}}{3(e+1)}(-1)^{n}+\frac{e^{2}}{(e-2)(e+1)} e^{n}=$ $C\left((e+1) 2^{n}+(e-2)(-1)^{n}\right) / 3+C e^{n}$.
4. My credit card charges 18% interest, compounded monthly. I make a $\$ 1000$ purchase, and make only my $\$ 25$ minimum payment each month. Find the balance on my card after n months.

Let b_{n} denote the card balance. The problem specifies that $b_{n}=\left(1+\frac{0.18}{12}\right) b_{n-1}-25=1.015 b_{n-1}-25$, and $b_{0}=1000$. The general homogeneous solution is $b_{n}=A(1.015)^{n}$, and we seek a nonhomogeneous solution via $b_{n}=B: B=1.015 B-25$, so $0.015 B=25$ and $B=\frac{5,000}{3}$. Hence the general solution is $b_{n}=A(1.015)^{n}+\frac{5,000}{3}$; the initial conditions give $1000=$ $b_{0}=A+\frac{5,000}{3}$ so $A=-\frac{2,000}{3}$ and $b_{n}=\frac{1000}{3}\left(-2(1.015)^{n}+5\right)$. As a side note, using logarithms we can calculate that the debt will be paid off (b_{n} negative) after 62 months, costing a total of almost $\$ 3100$.
5. We color each square of a $1 \times n$ chessboard with a color chosen from $[m](m>1)$, with the rule that the single color m may not be used twice in a row. How many ways can we do this?

Let a_{n} denote the desired quantity; we have $a_{0}=1, a_{1}=m$. If the first square is colored anything but m, the remainder can be colored in a_{n-1} ways. If the first square is colored m, then the next square must be colored something else ($m-1$ choices), and the balance can be colored in a_{n-2} ways. Hence a_{n} satisfies the recurrence $a_{n}=(m-1) a_{n-1}+(m-1) a_{n-2}$. This has characteristic equation $s^{2}-(m-1) s-(m-1)=0$, and roots $\alpha=\frac{m-1+\sqrt{m^{2}+2 m-3}}{2}, \beta=\frac{m-1-\sqrt{m^{2}+2 m-3}}{2}$. Using the initial conditions we find $a_{n}=\frac{m-\beta}{\alpha-\beta} \alpha^{n}+\frac{\alpha-m}{\alpha-\beta} \beta^{n}$.

Exam grades: High score $=100$, Median score $=78$, Low score $=52$

